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ABSTRACT 

The purpose of this paper is to prove a common fixed point theorem for two selfmaps on a S–metric space 

and deduce a common fixed point theorem for two selfmaps on a compact S–metric space. Further we show 

that a common fixed point theorem for two selfmaps of a metric space prove by Brian Fisher ([5]) is a 

particular case of our theorem. 
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1. INTRODUCTION AND PRELIMINARIES 

 

      Fixed point theory has great implications in the field of analysis. Fixed point theory is used to 

find solutions of different mathematical problems like integral equations, differential equations, 

optimization problems, convex minimization problems, image recovery, signal processing etc. 

Several mathematicians studied fixed point results over different spaces as metric space, Banach 

space, Reflexive space, Hilbert space and many more. One of the most important and fruitful result 

in metric space was given by Banach called “Banach Contraction Principle”. This principle was 

generalized and its several variants were studied by mathematicians over different spaces. 

        On the other hand, some authors are interested and have tried to give generalizations of metric 

spaces in different ways. In 1963 Gahler [6] gave the concepts of 2- metric space further in 1992 

Dhage [2] modified the concept of 2- metric space and introduced the concepts of D-metric space 

also proved fixed point theorems for selfmaps of such spaces. Later researchers have made a 

significant contribution to fixed point of D- metric spaces in [1], [3], and [4]. Unfortunately almost 

all the fixed point theorems proved on D-metric spaces are not valid in view of papers [7], [8] and 

[9].  Sedghi et al. [10] modified the concepts of D- metric space and introduced the concepts of 

D*- metric space also proved a common fixed 

point theorems in D*- metric space. 

       Recently, Sedghi et al [11] introduced the concept of S- metric space which is different from 

other space and proved fixed point theorems in S-metric space. They also gives some examples of 

S- metric spaces which shows that S- metric space is different from other spaces. In fact they gives 

following concepts of S- metric space. 
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Definition 1.1([11]): Let X be a non-empty set. An S-metric space on X is a function              

S: X3 → [0, ∞) that satisfies the following conditions, for each x, y, z, a ∈ X 

(i) S(x, y, z) ≥ 0  

(ii) S(x, y, z) = 0 if and only if x = y = z. 

(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S (z, z, a)    

The pair (X, S) is called an S–metric space. 

Immediate examples of such S-metric spaces are: 

 

Example 1.2: Let ℝ be the real line. Then S(x, y, z) = |x – y| + |y – z| + |z – x| for each           

  x, y, z ∈ℝ is an S-metric on ℝ. This S-metric is called the usual S-metric on ℝ.  

 

Example 1.3:  Let X = ℝ2, d be the ordinary metric on X.  

Put S(x, y, z) = d(x, y) + d(y, z) + d (z, x) is an S- metric on X. If we connect the points x, y, z by 

a line, we have a triangle and if we choose a point a mediating this triangle then the inequality S(x, 

y, z) ≤ S(x, x, a) + S(y, y, a) + S (z, z, a) holds. In fact   

S(x, y, z) = d(x, y) + d(y, z) + d (z, x) 

                ≤ d(x, a) + d(a, y) + d (y, a) + d(a, z) + d(z, a) + d (a, x) 

                = S(x, x, a) + S(y, y, a) + S (z, z, a) 

 

Example 1. 4: Let X = ℝn and || . || a norm on X, then S(x, y, z) = ||x – z|| + ||y – z|| is an S-metric 

on X.  

 

Remark 1. 5: it is easy to see that every D*-metric is S-metric, but in general the converse is not 

true, see the following example. 

 

 Example 1. 6:  Let X = ℝn and || . || a norm on X, then S(x, y, z) = ||y + z – 2x|| + ||y – z|| is an S-

metric on X, but it is not D*-metric because it is not symmetric. 

 

Lemma 1. 7: In an S–metric space, we have S(x, x, y) = S(y, y, x). 

Proof: By the third condition of S-metric, we get 

  S(x, x, y) ≤ S(x, x, x) + S(x, x, x) + S(y, y, x) = S(y, y, x)…… (1) 

  and similarly 

S(y, y, x) ≤  S( y, y, y)+ S(y, y, y) + S(x, x, y) = S(x, x, y)……(2) 

Hence, by (1) and (2), we obtain S(x, x, y) = S(y, y, x). 

 

Definition1.8: Let (X, S) be an S-metric space. For x ∈X and r > 0, we define the open ball BS(x, 

r) and closed ball BS[x, r] with a center x and a radius r as follows                                     

                        BS(x, r) = {y ∈ X; S(x, y, y) < r}  

                        BS[x, r] = {y ∈ X; S(x, y, y) ≤ r} 

For example, Let X =ℝ. Denote S(x, y, z) = | y + z – 2x | + | y – z | for all x, y, z ∈ℝ. Therefore 

BS(1, 2) = {y ∈ℝ ; S(y, y, 1) < 2} 

                  = {y∈ℝ ; | y – 1|< 1} = (0, 2). 
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Definition 1.9: Let (X, S) be an S–metric space and A ⊂ X.  

 (1)If for every x ∈ A, there is a r > 0 such that BS(x, r) ⊂ A, then the subset A called an open 

subset of X 

(2) If there is a r > 0 such that S(x, x, y) < r for all x, y ∈ A then A is said to be S–bounded. 

             (3)  A sequence {xn} in X converge to x if and only if S(xn, xn, x) → 0 as n →∞. That is for       

each ∈ > 0, there exists n0 ∈ ℕ such that for all n ≥ n0, S(xn, xn, x) < ∈ and we denote this by 

lim
n →∞

xn = x  

             (4) A sequence {xn} in X is called a Cauchy sequence if for each ∈ > 0, there exists n0 ∈ ℕ such 

that S(xn, xn, xm) < ∈ for each m , n ≥ n0   

(5) The S–metric space (X, S) is said to be complete if every Cauchy sequence is convergent 

sequence. 

           (6) Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0 such that BS(x, r)⊂A. 

Then τ is a topology on X (induced by the S-metric S).                

          (7) If (X, τ) is a compact topological space we shall call (X, S) is a compact S–metric space. 

 

Lemma1. 10([11]): Let (X, S) be an S-metric space. If r > 0 and x ∈ X, then the open ball            

                                BS(x, r) is an open subset of X. 

 

Lemma1. 11([11): Let (X, S) be an S-metric space. If the sequence {xn} in X converges to x,                  

                                 then x is unique. 

 

Lemma1. 12([11]): Let (X, S) be an S-metric space. If the sequence {xn} in X converges to x,       

                                then {xn} is a Cauchy sequence.  

 

Lemma1. 13([11]): Let (X, S) be an S-metric space. If there exists sequences {xn} and {yn} such      

                          that lim
n →∞

xn = x and lim
n →∞

yn = y, then  lim
n→∞

S(xn,xn,yn) = S(x, x, y). 

 

Lemma1. 14: Let (X, d) be a metric space. Then we have  

1. Sd(x, y, z) = d(x, y) + d(y, z) + d(z, x) for all x, y, z ∈ X is an S-metric on X 

2. xn → x in (X, d) if and only if Xn → x in (X, Sd) 

3. {xn} is a Cauchy sequence in (X, d) if and only if {xn} is a Cauchy sequence in (X, Sd) 

4. (X, d) is complete if and only if (X, Sd) is complete       

                                                       

Proof: (1) See [ Example (3), Page 260] 

(2) xn → x in (X, d) if and only if d(xn, x) → 0, if and only if Sd(xn, xn, x) = 3d(xn, x) → 0 that is, xn 

→ x in (X, Sd) 

(3)  {xn}is a Cauchy in  (X, d) if and only if d(xn, xm) → 0 as n, m → ∞, if and only if        

Sd(xn, xn, xm) = 3d(xn, xm) → 0 n, m → ∞,  that is, {xn} is Cauchy in (X, Sd) 

(4) It is a direct consequence of (2) and (3) 
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Notation: For any selfmap T of X, we denote T(x) by Tx.  

If P and Q are selfmaps of a set X, then any z ∈ X such that Pz = Qz = z is called a common fixed 

point of P and Q. 

Two selfmaps P and Q of X are said to be commutative if PQ = QP where PQ is their composition 

PoQ defined by (PoQ) x = PQx for all x ∈ X. 

 

            Definition 1.15: Suppose P and Q are selfmaps of a S–metric space (X, S) satisfying the condition 

Q(X) ⊆ P(X). Then for any x0 ∈ X, Qx0 ∈ Q(X) and hence Qx0 ∈ P(X), so that there is a x1 ∈ X 

with Qx0 = Px1, since Q(X) ⊆ P(X). Now Qx1 ∈ Q(X) and hence there is a x2 ∈ X with Qx2 ∈ 

Q(X) ⊆ P(X) so that Qx1 = Px2.  Again Qx2 ∈ Q(X) and hence Qx2 ∈ P(X) with Qx2 = Px3. Thus 

repeating this process to each x0 ∈ X, we get a sequence {xn} in X such that Qxn = Pxn+1 for n ≥ 0. 

We shall call this sequence as an associated sequence of x0 relative to the two selfmaps P and 

Q. It may be noted that there may be more than one associated sequence for a point x0 ∈ X relative 

to selfmaps P and Q. 

   Let P and Q are selfmaps of a S-metric space (X, S) such that Q(X) ⊆ P(X). For any xo ∈ X, if 

{xn} is a sequence in X such that  Qxn = Pxn+1 for  n ≥ 0, then {xn} is called an associated sequence 

of x0 relative to the two selfmaps P and Q.  

Definition 1.16: A function Ø: [0, ∞) → [0, ∞) is said to be a contractive modulus, if            Ø(0) 

= 0 and  Ø(t) < t for t > 0. 

Definition 1.17: A real valued function Ø defined on X ⊆ ℝ is said to be upper semi continuous, 

if lim
𝑛→∞

sup Ø(𝑡n) ≤ Ø (t) for every sequence {tn} in X with tn → t as n → ∞. 

Definition 1.18: If P and Q are selfmaps of a S-metric space (X, S) such that for every sequence 

{xn} in X with lim
𝑛→∞

𝑃𝑥n = lim
𝑛→∞

𝑄𝑥n = t, we have  

lim
𝑛→∞

𝑆(PQxn, QPxn, QPxn) = 0, then we say that P and Q are compatible. 

 

2. THE MAIN RESULTS: 

2.1 Theorem. Suppose P and Q are selfmaps of a S–metric space (X, S) satisfying the                          

conditions  

(i) Q (X) ⊆ P (X)  

(ii) S(Qx, Qy, Qy) ≤ β (x, y) for all x, y ∈ X ,  

where 

 (ii)′ β (x, y) = max{S(Px, Py, Py), S(Px, Qx, Qx), S(Py, Qy, Qy), 

                                                       
1

2
[S(Px, Qy, Qy) + S(Py, Qx, Qx)]} 

(iii)      P and Q are continuous.  

(iv)      the pair (P, Q) is compatible,  

              and 

(v) there is a point x0 ∈ X  and an associated sequence {xn} of x0  relative to the two  
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selfmaps such that the sequences {Qxn} and {Pxn} converge to some point z ∈ X. 

Further, if     

(vi) there exists (p, q) ∈ X2  such that f(p, q) =  , where  

(vi)′ f(x, y) =  
𝑆(𝑃𝑥,𝑄𝑦,𝑄𝑦)

𝛽(𝑥,𝑦)
    

then P and Q have a unique common fixed point  z ϵ X. 

Proof:  First suppose that 𝛽(x, y) > 0 for all x, y ∈ X, so that f(x, y) is well defined. Now 

by the inequality (ii), we find that f(x, y) ˂ 1 for all x, y∈ X. Hence if c = f (p, q) then c ≤ 

1, so that f(x, y) ≤ c for all x, y ∈ X and therefore S(Qx, Qy, Py) ≤ c 𝛽 (x , y)  

From (v), we get 

(2.1.1)  Px2n, Qx2n, Px2n+1 and Qx2n+1→ z as n → ∞ 

             Now, since P, Q are continuous, we have by (2.1.1) 

            P2x2n→Pz, and PQx2n+1→Pz as n → ∞ 

Since the pair (P, Q) is compatible, we have, in view of (2.1.1) that 

lim
𝑛→∞

𝑆( PQx2n+1, QPx2n+1, QPx2n+1) = 0, 

QPx2n+1→ Sz as n → ∞  

Also from (ii), we have  

(2.1.2)  S(QPx2n+1, Qx2n, Qx2n) ≤  β(Sx2n+1,x2n),  

  where  β(Px2n+1, x2n) = max{S(P2x2n+1, Px2n, Px2n), S(P2x2n+1, QPx2n, QPx2n), S(Px2n, Qx2n, 

Qx2n),                                                  

                                                        
1

2
[S(P2x2n+1, Qx2n, Qx2n) + S(Px2n, QPx2n+1, QPxn+1)]} 

which on letting n to ∞ and using the continuity of S gives  

lim
𝑛→∞

𝛽(Px2n+1, Qx2n) = max {S(Pz, z, z), S(Pz, Pz, Pz), S(z, z, z), 

                                                                      
1

2
 [S(Pz, z, z) + S(Pz, z, z)]}  

                                     = S(Pz, z, z) 

Therefore letting n to ∞ in (2.1.2), and using the above we get 

(2. 1. 3) S(Pz, z, z) ≤  S(Pz, z, z). 

Now, if Pz ≠ z, then S(Pz, z, z) > 0 and by the definition, we get                            S(Pz, z, 

z) ˂ S(Pz, z, z), contradicting (2.1.3) 

 Thus we have Pz = z. 

Now again from (ii) we have  

(2.1.4)  S(Qz, Qx2n, Qx2n )  ≤  β(z, x2n) 

where  β(z,, x2n)=max{S(Pz, Px2n, Px2n), S(Pz, Qz, Qz), S(Px2n, Qx2n, Qx2n),          

 [S(Pz, Qx2n, Qx2n) + S(Px2n, Qz, Qz)]},              in 

which on letting n to ∞ and using Pz = z, the continuity of  S and the condition (v), we get 

lim
𝑛→∞

𝛽(z,,x2n) = max {S(Pz, z, z), S(z, Qz, Qz), S(z, z, z),                                                                                 

                [S( Pz, z, z) + S(Pz, z, z)]} 
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                                       = S(z, Qz, Qz) 

Again letting n to ∞in (2.1.4), and using the above we get                                         S(Qz, 

z, z) ≤  S(Qz, z, z) 

and this will be contradiction if Qz ≠ z,  therefore  Qz = z. Thus z is a common fixed point 

of P and Q. 

To prove that z is unique, if possible suppose that z' is another   common fixed point of P 

and Q. Then from (ii), we have  

(2.1.5)  S(z, z', z') = S(Qz, Qz', Qz') ≤  β(z, z') 

                where β(z,, z') = max {S(Pz, z', z'), S(z, Qz, Qz), S(Pz', Qz', Qz'), 

                                                                          
1

2
[S(Pz, z', z') + S(Pz', Qz, Qz)]} 

                        = S(z, z', z') 

so that (2.1.5) gives S(z, z, z') ≤ S(z, z, z') and this will give a contradiction if z ≠ z'. 

Therefore z = z'. Thus z is the unique common fixed point of P and Q. 

Now suppose that β(x', y') = 0 for some x', y'∈ X. Then     

max{S(Px', Py', Py'), S(Px', Qx', Qx'), S(Py', Qy', Qy'), 

                                                 
1

2
[S(Px', Qy', Qy') + S(Py', Qx', Qx')]} = 0,  

 which implies  

(2.1.6)  Px' = Qx' = Py' = Qy' 

 Then PQx' = P(Px') = P2x' = PPy'.  Since the pair (P, Q) is compatible  

(2.1.7)   lim
𝑛→∞

𝑆(PQxn, QPxn, QPxn) = 0 

whenever    lim
𝑛→∞

𝑆xn= lim
𝑛→∞

𝑇xn= t  for some  t ∈ X. 

Let xn = x', then Pxn → Px',  Qxn → Qx' as n →∞.  

Therefore (2.1.7) and the continuity of S give S(PQx',  QPx', QPx') = 0, which implies 

(2.1.8) PQx' = QPx' = Q2x' 

If Qx′ ≠ Q2x', then from (ii) we have  

(2.1.9) S(Qx', Q2x', Q2x') ˂ β(x', Qx') 

But by (2.1.6) and (2.1.8), we have  

β(x', Qx') = max {S(Px', PQx', PQx'), S(Px', Q2 x', Q2x'), S(PQx', Q2x', Q2x'),’                                                                                    

               [S(Px', Q2x'’, Q2x'’) + S(PQx', Qx', Qx')]} 

                              = S(Qx', Q2x', Q2x') 

 This contradicts (2.1.9) if Qx′ ≠ Q2x'.  

Therefore Qx' = Q2xʹ. Now Qx' = Q2x' = Q(Qx'), showing that Qx' =  z is a fixed point  of Q.  

Further Pz = PQx' = QPx' = Q2x' = Qz = z. 

Therefore z is also a fixed point of P. Hence z is a common fixed point of P and Q. 

Now we prove the uniqueness of the common fixed point. If possible assume that 

z' is another common fixed point of P and Q. If z ≠ z', then from (ii) we have   

          S(z, z', z') = S(Qz, Qz', Qz') ˂ β(z, z') 

  where β(z,, z') = max {S(Pz, Pz', Pz'), S(Pz, Qz, Qz), S(Pz', Qz', Qz'), 

     [S(Pz, Qz', Qz') + S(Pz', Qz, Qz)]} 
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                     = S(z, z', z'),  

This impossibility shows z = z'. 

Hence z is the unique common fixed point of P and Q. 

As a consequence of Theorem 2.1, we have the following  

 

2.2 Corollary: Suppose (X, S) is a S-metric space satisfying conditions (i), (ii), (iii) and (iv) of 

Theorem 2.1. Further, if (X, S) is compact. Then P and Q have unique common fixed point 

z. 

Proof: Since (X, S) is  a compact S-metric space, it is complete and  therefore for each x0 

∈ X and for any associated sequence {xn} of x0 relative to two selfmaps  such that the 

sequences {Pxn} and {Qxn} converge to some z ∈X and hence condition (v) of Theorem 

2.1 holds . Also, if (X, S) is compact S-metric space, then f(x, y) is continuous function on 

the compact S-metric space X2. Therefore we can find (p, q)∈  X2 such that f(p, q)  = 

, proving the condition (vi) of the Theorem 2.1. Hence by Theorem 2.1, the 

corollary follows. 

 

2.3 Corollary ([5]):  Suppose P and Q are two selfmaps of metric space (X, d) such that  

(i)     Q(X) ⊆ P(X) 

(ii)    d(Qx, Qy) ˂ α(x, y) for all x, y ∈ X.   

          where 

(ii)'    α(x, y) =max {d(Px, Py), d(Px, Qx), d(Py, Qy), d(Px, Qy), d(Py, Qx)} 

(i)    P and Q are continuous, 

 and  

(iv)   PQ = QP, further if  

(v)    X is compact. 

Then P and Q have a unique common fixed point. 

Proof: Given (X, d) is a metric space satisfying condition (i) to (v) of the corollary.  

If S(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, then (X, S) is a S-metric space and         

S(x, y, x) = d(x, y) Therefore (ii) can be written as S(Qx, Qy, Qy) ˂ α(x, y) for all  x, y ∈ X, where  

α(x, y) = max {S(Px,Py,Py), S(Px,Px,Px), S(Py,Qy,Qy), S(Px,Qy,Qy), S(Py, Qx,Qx)} which is 

the same as condition (ii) of Theorem 2.1. Also since (X, d) is complete, we have (X, S) is 

complete, by Corollary 1.13. 

Now P and Q are selfmaps on (X, S) satisfying conditions of Corollary 2.2 and hence the corollary 

follows. 
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